A Generalized Distance in Graphs and Centered Partitions

نویسنده

  • Cristian Lenart
چکیده

This paper is concerned with a new distance in undirected graphs with weighted edges, which gives new insights into the structure of all minimum spanning trees of a graph. This distance is a generalized one, in the sense that it takes values in a certain Heyting semigroup. More precisely, it associates with each pair of distinct vertices in a connected component of a graph the set of all paths joining them in the minimum spanning trees of that component. A partial order and an addition of these sets of paths are defined. We show how general algorithms for path algebra problems can be used to compute the generalized distance. Some theoretical problems concerning this distance are formulated. The main application of our generalized distance is related to recent clustering procedures. Given a connected graph with weighted edges and certain vertices labeled as centers, we define a centered forest to be a spanning forest with exactly one center in each tree component. A partition of the vertices determined by a minimum centered forest will be called a centered partition. These partitions are characterized in terms of the generalized distance, and some corollaries are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

Generalized Degree Distance of Strong Product of Graphs

In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...

متن کامل

Wiener Index of Graphs in Terms of Eccentricities

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

متن کامل

On the intersection of distance-j-ovoids and subpolygons of generalized polygons

In [5] (see also [4]), a technique was given for calculating the intersection sizes of combinatorial substructures associated with regular partitions of distance-regular graphs. This technique was based on the orthogonality of the eigenvectors which correspond to distinct eigenvalues of the (symmetric) adjacency matrix. In the present paper, we give a more general method for calculating interse...

متن کامل

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1998